A novel shape optimization method using knot insertion algorithm in B-spline and its application to transonic airfoil design
نویسندگان
چکیده
A new method using the cubic B-spline curves with nominal uniform knot set to parameterize the geometry is proposed to deal with shape optimization problems. In the method, the control points of the B-spline curves are set to be the design variables in the optimization scheme. A knot insertion algorithm has been introduced in order to keep the geometry unchanged whilst increasing the number of control points at the final optimization stage. The super-reduced idea and the mesh refinement are also employed to deal with the equality constraint and speed up the optimization process. The method is applied to two problems. The first is a 2-dimensional Poisson problem, and the second is an airfoil design problem. In both applications, the results show that the new method is much more efficient when compared with the traditional methods. In the airfoil design problem, the drag of the airfoil has been reduced significantly with much less function calls.
منابع مشابه
The Effects of Shape Parameterization on the Efficiency of Evolutionary Design Optimization for Viscous Transonic Airfoils
The effect of airfoil shape parameterization on optimum design and its influence on the convergence of the evolutionary optimization process is presented. Three popular airfoil parametric methods including PARSEC, Sobieczky and B-Spline (Bezier curve) are studied and their efficiency and results are compared with those of a new method. The new method takes into consideration the characteristics...
متن کاملAn Optimization Method Based On B-spline Shape Functions & the Knot Insertion Algorithm
A new method is presented to deal with shape optimization problems. In this method, the geometry is parameterized by B-spline shape functions with the control points of the B-spline curves becoming the design variables in the optimization scheme. The core idea of the method presented is to introduce the knot insertion algorithm which can keep the geometry unchanged whilst increasing the number ...
متن کاملTransonic Airfoil Shape Optimization in Preliminary Design Environment
A modified profile optimization method using a smoothest shape modification strategy (POSSEM) is developed for airfoil shape optimization in a preliminary design environment. POSSEM is formulated to overcome two technical difficulties frequently encountered when conducting multipoint airfoil optimization within a high-resolution design space: the generation of undesirable optimal airfoil shapes...
متن کاملAirfoil Shape Optimization with Adaptive Mutation Genetic Algorithm
An efficient method for scattering Genetic Algorithm (GA) individuals in the design space is proposed to accelerate airfoil shape optimization. The method used here is based on the variation of the mutation rate for each gene of the chromosomes by taking feedback from the current population. An adaptive method for airfoil shape parameterization is also applied and its impact on the optimum desi...
متن کاملAerodynamic Design Optimization Using Genetic Algorithm (RESEARCH NOTE)
An efficient formulation for the robust shape optimization of aerodynamic objects is introduced in this paper. The formulation has three essential features. First, an Euler solver based on a second-order Godunov scheme is used for the flow calculations. Second, a genetic algorithm with binary number encoding is implemented for the optimization procedure. The third ingredient of the procedure is...
متن کامل